Certificado de Análise

PADRÕES DE CALIBRAÇÃO SECUNDÁRIOS PARA A REGIÃO DO ESPECTRO ULTRAVIOLETA E VISÍVEL

Certificado Número: 091856 Data de Emissão: 17/01/2019

Número do Conjunto: F2-N33 Número de Catálogo: UVABS101

Marca: Specsol

Data da Calibração: 17/01/2019 Próxima Calibração: 17/01/2021

1 – Descrição

Este estojo contém um filtro de vidro de densidade neutra (NG) com absorbância nominal de 0,3 UA e destina-se à calibração da escala de absorbância ou transmitância de espectrofotômetros.

Durante a calibração é recomendável primeiramente à utilização do filtro de holmio para verificação da escala de comprimento de onda (λ) e somente depois proceder às leituras dos filtros de vidro neutro (NG) para verificação das leituras de absorbância.

Os valores de absorbância dos filtros NG podem ser convertidos em transmitância utilizando a seguinte fórmula:

 $%T = (10^{-A}) \times 100$ onde A é a absorbância certificada em um dado comprimento de onda.

Os valores certificados deste conjunto de filtro são rastreados aos padrões do National Institute of Standards and Technology (NIST-USA).

2 – Metodologia de Calibração Utilizada

As leituras de absorbâncias do filtro de vidro neutro (NG) foram registradas em espectrofotômetro de alta resolução, número de série EL99093040, previamente calibrado com padrões NIST e usando procedimento de controle de desempenho do fabricante.

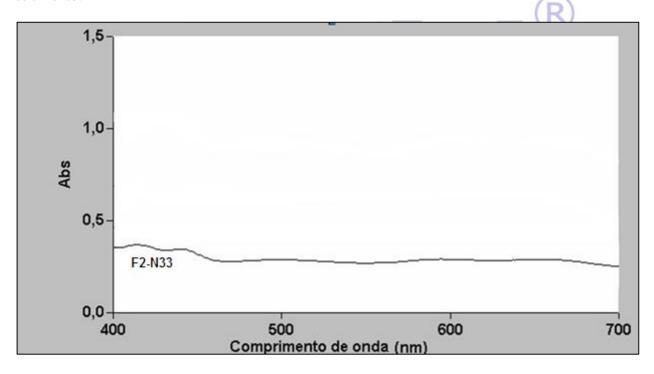
Os seguintes padrões NIST foram utilizados para calibrar o instrumento:

SRM 931h – "Liquid Absorbance Standard for Ultraviolet and Visible Spectrophotometry" SRM 2034 – "Holmium Oxide Solution Wavelength Standard from 240 nm to 650 nm"

Páginas: 1/5

3 – Condições de Calibração e Leituras

Escala: Absorbância


Modo: Leitura simples pontual

Feixe: Duplo Slit: 1 nm a 2 nm Zeragem: Ar

4 – Valores Certificados e Incertezas

Filtro	Absorbância nos seguintes comprimentos de onda a 25 °C				
	440 nm	465 nm	546 nm	590 nm	635 nm
F2-N33	0,342 +/- 0,005	0,291 +/- 0,005	0,288 +/- 0,005	0,304 +/- 0,005	0,302 +/- 0,005

As incertezas expandidas (U) declaradas para intervalo de confiança de 95% correspondem à soma das incertezas dos padrões primários NIST, reprodutibilidade das medidas e erros sistemáticos do instrumento.

Espectro Típico do Filtro SpecSol para Absorbância no Visível

Importante: Este relatório se refere somente ao número de lote/série identificado nos filtros

Páginas: 2/5

5 - Aprovação

Data de aprovação: 17/01/2019

Elaborado por: Gislaine Rodrigues da Cruz - Técnica Assistente

CRQ 04474649 - 4ª Região

Justaine Suuz

Aprovado por: Msc. Nilton Pereira Alves Granado – Responsável Técnico CRQ 04428809 - 4ª Região

Páginas: 3/5

Certificado de Análise

RECOMENDAÇÕES: FILTROS SECUNDÁRIOS SPECSOL PARA A REGIÃO DO ESPECTRO VISÍVEL

Descrição: Para atender várias normas e padronizações como as Boas Práticas de Laboratório (GLP), ISO17025 e ISO9000-9004, o desempenho dos espectrofotômetros deve ser checado em intervalos regulares.

Este filtro secundário permite checar a acuracidade de espectrofotômetros com respeito a:

- Absorbância ou transmitância no intervalo do espectro visível nos comprimentos de onda 400 nm a 650 nm.

Este estojo se compõe de 1 filtro de vidro montado em suporte plástico. É apropriado para uso em adaptadores de células de 10 mm de espectrofotômetros.

1) Filtros de Vidro Neutro (NG)

Este filtro identificado como F2, é de vidro neutro (NG). Este vidro foi selecionado devido a sua homogeneidade e estabilidade e também por fornecer valores de transmissão uniformes no espectro visível.

A influência da temperatura nos valores de absorbância é muito pequena (-0,0003 UA/K) e a influência da largura espectral do feixe (bandwidth ou slit) é de +/-0,0005U A no intervalo de 0,5 a 4 nm.

2) Manuseio dos Filtros

Os filtros devem ser tratados com especial cuidado, do contrário podem perder a validade. Sujeira, riscos, etc... na superfície ótica pode facilmente introduzir erros substanciais.

Observe as seguintes regras quando manusear os filtros de calibração:

- Tomar especial cuidado em não tocar ou riscar a superfície ótica quando inserir o filtro no suporte da célula no espectrofotômetro.
- Não usar os filtros em atmosferas corrosivas e poeirentas
- Após o uso, não deixar os filtros em cima da bancada do laboratório, mas retornar imediatamente ao estojo de armazenagem.
- Sempre manter o estojo fechado e em lugar seguro, onde não ocorra o risco de acúmulo de poeira.
- Não limpar as superfícies óticas dos filtros a menos que seja absolutamente essencial. Se necessitar limpar as superfícies óticas, para remover digitais por exemplo, faça com um lenço macio, que não produza fibras, umedecido com etanol.
- Guarde o certificado de calibração em um lugar seguro.

3) Verificação da acuracidade de absorbância e comprimento de onda do espectrofotômetro.

Procedimento Preliminar (Variável de acordo com o tipo de espectrofotômetro):

- 1) Ligue o espectrofotômetro de deixe aquecê-lo por 30 minutos.
- 2) Instale o adaptador de célula de 10 mm no compartimento de amostra. Somente use adaptador padrão, para prover a melhor posição para as leituras dos filtros.
- 3) Ajuste o monocromador para 500 nm e faça o auto zero do aparelho.
- 4) Checar o posicionamento correto do feixe de luz como segue:

Páginas: 4/5

Certificado de Análise

- a) Inserir um filtro vazio no adaptador da célula, sempre orientado com o feixe de luz passando pela região vazada.
- b) Se isso não ocorrer, o filtro deverá parcialmente obstruir o feixe de luz e nenhuma leitura deverá ser obtida no visor do espectrofotômetro.
- c) Ajuste a posição vertical do adaptador de célula para que o feixe de luz passe através da abertura.
- d) Se o feixe de luz bater no lado da abertura, use o parafuso de ajuste horizontal do adaptador de célula para posicionar corretamente o feixe.
- e) Quando o filtro (F0) é posicionado corretamente no espectrofotômetro o visor deverá ler 0,000 de absorbância.

4) Checagem da Acuracidade Absorbância

Após completar o procedimento preliminar continue como segue (Variável de acordo com o tipo de espectrofotômetro):

- Selecione um determinado comprimento de onda no espectrofotômetro, conforme identificado no certificado e de acordo com o manual do aparelho.
- 2) Ajuste os seguintes parâmetros do espectrofotômetro para indicar os valores:

Escala: Absorbância

Modo: Leitura simples pontual

Slit: 1 nm ou 2 nm

Tempo de resposta: Rápida (tipicamente 2 s)

Outros parâmetros podem permanecerer em seus valores padrões (default)

- 3) Zere o espectrofotômetro com Ar
- 4) Insira o filtro F2 no adaptador da célula.
- 5) Inicie a leitura de absorbância no comprimento de onda desejado e repita o procedimento para cada um dos comprimentos de onda certificados.
- 6) Compare as leituras obtidas com os valores certificados. Se dois conjuntos de leituras desviarem mais que os valores toleráveis pelo cliente, o aparelho deverá ser enviado para manutenção para que sejam feitos os devidos ajustes.

5) Informações Gerais

A acuracidade de comprimento de onda e absorbância de um espectrofotômetro são dois parâmetros importantes para obtenção de leituras precisas. Outros fatores importantes incluem a estabilidade de zeragem, estabilidade de linha base (baseline flatness), luz expúria (stray light) e acuracidade da largura de fenda (slit).

Estes parâmetros adicionais devem ser verificados de tempos em tempos usando procedimentos adequados (ver manual do aparelho que cobre estes tópicos). As acuracidades das leituras de comprimento de onda e absorbância dependem em parte da integridade destes parâmetros adicionais.

Como definido por padrões internacionais, o padrão de calibração é designado para inspeção, medição e teste de equipamentos e dispositivos que devem ser recalibrados em certos intervalos.

Os intervalos para recalibração dos filtros dependem da freqüência de uso e os critérios de aceitação dos equipamentos que fazem uso destes filtros devem ser fixados pelo cliente.

Nós recomendamos que o conjunto de filtros sejam recalibrados após 24 meses da última calibração.

Filtros ou conjuntos enviados para nós são limpos e calibrados. Eles retornam com um novo certificado. Nós nos reservamos o direito de substituir filtros danificados, especialmente quando mostram desvios significativos dos valores nominais.

Páginas: 5/5